独立光伏电源系统设计方法

来源:未知  发布时间:2013-09-26 20:09  Tags:光伏电源 
经过光伏工作者们坚持不懈的努力,太阳能电池的生产技术不断得到提高,并且日益广泛地应用于各个领域。特别是邮电通信方面,由于近年来通信行业的迅猛发展,对通信电源的要求也越来越高,所以稳定可靠的太阳能电源被广泛使用于通信领域。而如何根据各地区太...

经过光伏工作者们坚持不懈的努力,太阳能电池的生产技术不断得到提高,并且日益广泛地应用于各个领域。特别是邮电通信方面,由于近年来通信行业的迅猛发展,对通信电源的要求也越来越高,所以稳定可靠的太阳能电源被广泛使用于通信领域。而如何根据各地区太阳能辐射条件,来设计出既经济而又可靠的光伏电源系统,这是众多专家学者研究已久的课题,而且已有许多卓越的研究成果,为我国光伏事业的发展奠定了坚实的基础。笔者在学习各专家的设计方法时发现,这些设计仅考虑了蓄电池的自维持时间(即最长连续阴雨天),而没有考虑到亏电后的蓄电池最短恢复时间(即两组最长连续阴雨天之间的最短间隔天数)。这个问题尤其在我国南方地区应引起高度重视,因为我国南方地区阴雨天既长又多,而对于方便适用的独立光伏电源系统,由于没有应急的其他电源保护备用,所以应该将此问题纳入设计中一起考虑。

本文综合以往各设计方法的优点,结合笔者多年来实际从事光伏电源系统设计工作的经验,引入两组最长连续阴雨天之间的最短间隔天数作为设计的依据之一,并综合考虑了各种影响太阳能辐射条件的因素,提出了太阳能电池、蓄电池容量的计算公式,及相关设计方法。

2影响设计的诸多因素

太阳照在地面太阳能电池方阵上的辐射光的光谱、光强受到大气层厚度(即大气质量)、地理位置、所在地的气候和气象、地形地物等的影响,其能量在一日、一月和一年内都有很大的变化,甚至各年之间的每年总辐射量也有较大的差别。

太阳能电池方阵的光电转换效率,受到电池本身的温度、太阳光强和蓄电池电压浮动的影响,而这三者在一天内都会发生变化,所以太阳能电池方阵的光电转换效率也是变量。

蓄电池组也是工作在浮充电状态下的,其电压随方阵发电量和负载用电量的变化而变化。蓄电池提供的能量还受环境温度的影响。

太阳能电池充放电控制器由电子元器件制造而成,它本身也需要耗能,而使用的元器件的性能、质量等也关系到耗能的大小,从而影响到充电的效率等。

负载的用电情况,也视用途而定,如通信中继站、无人气象站等,有固定的设备耗电量。而有些设备如灯塔、航标灯、民用照明及生活用电等设备,用电量是经常有变化的。

因此,太阳能电源系统的设计,需要考虑的因素多而复杂。特点是:所用的数据大多为以前统计的数据,各统计数据的测量以及数据的选择是重要的。

设计者的任务是:在太阳能电池方阵所处的环境条件下(即现场的地理位置、太阳辐射能、气候、气象、地形和地物等),设计的太阳能电池方阵及蓄电池电源系统既要讲究经济效益,又要保证系统的高可靠性。

某特定地点的太阳辐射能量数据,以气象台提供的资料为依据,供设计太阳能电池方阵用。这些气象数据需取积累几年甚至几十年的平均值。

地球上各地区受太阳光照射及辐射能变化的周期为一天24h。处在某一地区的太阳能电池方阵的发电量也有24h的周期性的变化,其规律与太阳照在该地区辐射的变化规律相同。但是天气的变化将影响方阵的发电量。如果有几天连续阴雨天,方阵就几乎不能发电,只能靠蓄电池来供电,而蓄电池深度放电后又需尽快地将其补充好。设计者多数以气象台提供的太阳每天总的辐射能量或每年的日照时数的平均值作为设计的主要数据。由于一个地区各年的数据不相同,为可靠起见应取近十年内的最小数据。根据负载的耗电情况,在日照和无日照时,均需用蓄电池供电。气象台提供的太阳能总辐射量或总日照时数对决定蓄电池的容量大小是不可缺少的数据。

对太阳能电池方阵而言,负载应包括系统中所有耗电装置(除用电器外还有蓄电池及线路、控制器等)的耗量。

方阵的输出功率与组件串并联的数量有关,串联是为了获得所需要的工作电压,并联是为了获得所需要的工作电流,适当数量的组件经过串并联即组成所需要的太阳能电池方阵。

3蓄电池组容量设计

太阳能电池电源系统的储能装置主要是蓄电池。与太阳能电池方阵配套的蓄电池通常工作在浮充状态下,其电压随方阵发电量和负载用电量的变化而变化。它的容量比负载所需的电量大得多。蓄电池提供的能量还受环境温度的影响。为了与太阳能电池匹配,要求蓄电池工作寿命长且维护简单。

(1)蓄电池的选用

能够和太阳能电池配套使用的蓄电池种类很多,目前广泛采用的有铅酸免维护蓄电池、普通铅酸蓄电池和碱性镍镉蓄电池三种。国内目前主要使用铅酸免维护蓄电池,因为其固有的“免”维护特性及对环境较少污染的特点,很适合用于性能可靠的太阳能电源系统,特别是无人值守的工作站。普通铅酸蓄电池由于需要经常维护及其环境污染较大,所以主要适于有维护能力或低档场合使用。碱性镍镉蓄电池虽然有较好的低温、过充、过放性能,但由于其价格较高,仅适用于较为特殊的场合。

(2)蓄电池组容量的计算

蓄电池的容量对保证连续供电是很重要的。在一年内,方阵发电量各月份有很大差别。方阵的发电量在不能满足用电需要的月份,要靠蓄电池的电能给以补足;在超过用电需要的月份,是靠蓄电池将多余的电能储存起来。所以方阵发电量的不足和过剩值,是确定蓄电池容量的依据之一。同样,连续阴雨天期间的负载用电也必须从蓄电池取得。所以,这期间的耗电量也是确定蓄电池容量的因素之一。

因此,蓄电池的容量BC计算公式为:

BC=A×QL×NL×TO/CCAh(1)

式中:A为安全系数,取1.1~1.4之间;

QL为负载日平均耗电量,为工作电流乘以日工作小时数;

NL为最长连续阴雨天数;

TO为温度修正系数,一般在0℃以上取1,-10℃以上取1.1,-10℃以下取1.2;

CC为蓄电池放电深度,一般铅酸蓄电池取0.75,碱性镍镉蓄电池取0.85。

4太阳能电池方阵设计

(1)太阳能电池组件串联数Ns

将太阳能电池组件按一定数目串联起来,就可获得所需要的工作电压,但是,太阳能电池组件的串联数必须适当。串联数太少,串联电压低于蓄电池浮充电压,方阵就不能对蓄电池充电。如果串联数太多使输出电压远高于浮充电压时,充电电流也不会有明显的增加。因此,只有当太阳能电池组件的串联电压等于合适的浮充电压时,才能达到最佳的充电状态。

计算方法如下:

Ns=UR/Uoc=(Uf+UD+Uc)/Uoc(2)

式中:UR为太阳能电池方阵输出最小电压;

Uoc为太阳能电池组件的最佳工作电压;

Uf为蓄电池浮充电压;

UD为二极管压降,一般取0.7V;

UC为其它因数引起的压降。

表1我国主要城市的辐射参数表

城市 纬度Φ 日辐射量Ht 最佳倾角Φop 斜面日辐射量 修正系数Kop
哈尔滨 45.68 12703 Φ+3 15838 1.1400
长春 43.90 13572 Φ+1 17127 1.1548
沈阳 41.77 13793 Φ+1 16563 1.0671
北京 39.80 15261 Φ+4 18035 1.0976
天津 39.10 14356 Φ+5 16722 1.0692
呼和浩特 40.78 16574 Φ+3 20075 1.1468
太原 37.78 15061 Φ+5 17394 1.1005
乌鲁木齐 43.78 14464 Φ+12 16594 1.0092
西宁 36.75 16777 Φ+1 19617 1.1360
兰州 36.05 14966 Φ+8 15842 0.9489
银川 38.48 16553 Φ+2 19615 1.1559
西安 34.30 12781 Φ+14 12952 0.9275
上海 31.17 12760 Φ+3 13691 0.9900
南京 32.00 13099 Φ+5 14207 1.0249
合肥 31.85 12525 Φ+9 13299 0.9988
杭州 30.23 11668 Φ+3 12372 0.9362
南昌 28.67 13094 Φ+2 13714 0.8640
福州 26.08 12001 Φ+4 12451 0.8978
济南 36.68 14043 Φ+6 15994 1.0630
郑州 34.72 13332 Φ+7 14558 1.0476
武汉 30.63 13201 Φ+7 13707 0.9036
长沙 28.20 11377 Φ+6 11589 0.8028
广州 23.13 12110 Φ-7 12702 0.8850
海口 20.03 13835 Φ+12 13510 0.8761
南宁 22.82 12515 Φ+5 12734 0.8231
成都 30.67 10392 Φ+2 10304 0.7553
贵阳 26.58 10327 Φ+8 10235 0.8135
昆明 25.02 14194 Φ-8 15333 0.9216
拉萨 29.70 21301 Φ-8 24151 1.0964

蓄电池的浮充电压和所选的蓄电池参数有关,应等于在最低温度下所选蓄电池单体的最大工作电压乘以串联的电池数。

(2)太阳能电池组件并联数Np

在确定NP之前,我们先确定其相关量的计算方法。

①将太阳能电池方阵安装地点的太阳能日辐射量Ht,转换成在标准光强下的平均日辐射时数H(日辐射量参见表1):

H=Ht×2.778/10000h(3)

式中:2.778/10000(h·m2/kJ)为将日辐射量换算为标准光强(1000W/m2)下的平均日辐射时数的系数。

②太阳能电池组件日发电量Qp

Qp=Ioc×H×Kop×CzAh(4)

式中:Ioc为太阳能电池组件最佳工作电流;

Kop为斜面修正系数(参照表1);

Cz为修正系数,主要为组合、衰减、灰尘、充电效率等的损失,一般取0.8。

③两组最长连续阴雨天之间的最短间隔天数Nw,此数据为本设计之独特之处,主要考虑要在此段时间内将亏损的蓄电池电量补充起来,需补充的蓄电池容量Bcb为:

Bcb=A×QL×NLAh(5)

④太阳能电池组件并联数Np的计算方法为:

Np=(Bcb+Nw×QL)/(Qp×Nw)(6)

式(6)的表达意为:并联的太阳能电池组组数,在两组连续阴雨天之间的最短间隔天数内所发电量,不仅供负载使用,还需补足蓄电池在最长连续阴雨天内所亏损电量。

(3)太阳能电池方阵的功率计算

根据太阳能电池组件的串并联数,即可得出所需太阳能电池方阵的功率P:

P=Po×Ns×NpW(7)

式中:Po为太阳能电池组件的额定功率。

5设计实例

以广州某地面卫星接收站为例,负载电压为12V,功率为25W,每天工作24h,最长连续阴雨天为15d,两最长连续阴雨天最短间隔天数为30d,太阳能电池采用云南半导体器件厂生产的38D975×400型组件,组件标准功率为38W,工作电压17.1V,工作电流2.22A,蓄电池采用铅酸免维护蓄电池,浮充电压为(14±1)V。其水平面太阳辐射数据参照表1,其水平面的年平均日辐射量为12110(kJ/m2),Kop值为0.885,最佳倾角为16.13°,计算太阳能电池方阵功率及蓄电池容量。

(1)蓄电池容量Bc

Bc=A×QL×NL×To/CC

=1.2×(25/12)×24×15×1/0.75

=1200Ah

(2)太阳能电池方阵功率P

因为:

Ns=UR/Uoc=(Uf+UD+UC)/Uoc

=(14+0.7+1)/17.1=0.92≈1

Qp=Ioc×H×Kop×Cz

=2.22×12110×(2.778/10000)×0.885×0.8

≈5.29Ah

Bcb=A×QL×NL

=1.2×(25/12)×24×15=900Ah

QL=(25/12)×24=50Ah

Np=(Bcb+Nw×QL)/(Qp×Nw)

=(900+30×50)/(5.29×30)≈15

故太阳能电池方阵功率为:

P=Po×Ns×Np=38×1×15=570W

(3)计算结果

该地面卫星接收站需太阳能电池方阵功率为570W,蓄电池容量为1200Ah。